3.9 \(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=106 \[ \frac {a (A+B) \tan ^3(c+d x)}{3 d}+\frac {a (A+B) \tan (c+d x)}{d}+\frac {a (3 A+4 B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a (3 A+4 B) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {a A \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

[Out]

1/8*a*(3*A+4*B)*arctanh(sin(d*x+c))/d+a*(A+B)*tan(d*x+c)/d+1/8*a*(3*A+4*B)*sec(d*x+c)*tan(d*x+c)/d+1/4*a*A*sec
(d*x+c)^3*tan(d*x+c)/d+1/3*a*(A+B)*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2968, 3021, 2748, 3767, 3768, 3770} \[ \frac {a (A+B) \tan ^3(c+d x)}{3 d}+\frac {a (A+B) \tan (c+d x)}{d}+\frac {a (3 A+4 B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a (3 A+4 B) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {a A \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]

[Out]

(a*(3*A + 4*B)*ArcTanh[Sin[c + d*x]])/(8*d) + (a*(A + B)*Tan[c + d*x])/d + (a*(3*A + 4*B)*Sec[c + d*x]*Tan[c +
 d*x])/(8*d) + (a*A*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (a*(A + B)*Tan[c + d*x]^3)/(3*d)

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx &=\int \left (a A+(a A+a B) \cos (c+d x)+a B \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx\\ &=\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{4} \int (4 a (A+B)+a (3 A+4 B) \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+(a (A+B)) \int \sec ^4(c+d x) \, dx+\frac {1}{4} (a (3 A+4 B)) \int \sec ^3(c+d x) \, dx\\ &=\frac {a (3 A+4 B) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{8} (a (3 A+4 B)) \int \sec (c+d x) \, dx-\frac {(a (A+B)) \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {a (3 A+4 B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a (A+B) \tan (c+d x)}{d}+\frac {a (3 A+4 B) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {a (A+B) \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.42, size = 77, normalized size = 0.73 \[ \frac {a \left (3 (3 A+4 B) \tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \sec (c+d x) \left (8 (A+B) (\cos (2 (c+d x))+2) \sec (c+d x)+6 A \sec ^2(c+d x)+9 A+12 B\right )\right )}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]

[Out]

(a*(3*(3*A + 4*B)*ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*(9*A + 12*B + 8*(A + B)*(2 + Cos[2*(c + d*x)])*Sec[c +
d*x] + 6*A*Sec[c + d*x]^2)*Tan[c + d*x]))/(24*d)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 127, normalized size = 1.20 \[ \frac {3 \, {\left (3 \, A + 4 \, B\right )} a \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (3 \, A + 4 \, B\right )} a \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (16 \, {\left (A + B\right )} a \cos \left (d x + c\right )^{3} + 3 \, {\left (3 \, A + 4 \, B\right )} a \cos \left (d x + c\right )^{2} + 8 \, {\left (A + B\right )} a \cos \left (d x + c\right ) + 6 \, A a\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/48*(3*(3*A + 4*B)*a*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*A + 4*B)*a*cos(d*x + c)^4*log(-sin(d*x + c)
+ 1) + 2*(16*(A + B)*a*cos(d*x + c)^3 + 3*(3*A + 4*B)*a*cos(d*x + c)^2 + 8*(A + B)*a*cos(d*x + c) + 6*A*a)*sin
(d*x + c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

giac [A]  time = 1.69, size = 188, normalized size = 1.77 \[ \frac {3 \, {\left (3 \, A a + 4 \, B a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (3 \, A a + 4 \, B a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (9 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 49 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 28 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 31 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 52 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 39 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 36 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/24*(3*(3*A*a + 4*B*a)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*A*a + 4*B*a)*log(abs(tan(1/2*d*x + 1/2*c) -
1)) - 2*(9*A*a*tan(1/2*d*x + 1/2*c)^7 + 12*B*a*tan(1/2*d*x + 1/2*c)^7 - 49*A*a*tan(1/2*d*x + 1/2*c)^5 - 28*B*a
*tan(1/2*d*x + 1/2*c)^5 + 31*A*a*tan(1/2*d*x + 1/2*c)^3 + 52*B*a*tan(1/2*d*x + 1/2*c)^3 - 39*A*a*tan(1/2*d*x +
 1/2*c) - 36*B*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d

________________________________________________________________________________________

maple [A]  time = 0.16, size = 171, normalized size = 1.61 \[ \frac {2 a A \tan \left (d x +c \right )}{3 d}+\frac {a A \left (\sec ^{2}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{3 d}+\frac {a B \sec \left (d x +c \right ) \tan \left (d x +c \right )}{2 d}+\frac {a B \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {a A \left (\sec ^{3}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{4 d}+\frac {3 a A \sec \left (d x +c \right ) \tan \left (d x +c \right )}{8 d}+\frac {3 a A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8 d}+\frac {2 a B \tan \left (d x +c \right )}{3 d}+\frac {a B \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x)

[Out]

2/3*a*A*tan(d*x+c)/d+1/3*a*A*sec(d*x+c)^2*tan(d*x+c)/d+1/2/d*a*B*sec(d*x+c)*tan(d*x+c)+1/2/d*a*B*ln(sec(d*x+c)
+tan(d*x+c))+1/4*a*A*sec(d*x+c)^3*tan(d*x+c)/d+3/8*a*A*sec(d*x+c)*tan(d*x+c)/d+3/8/d*a*A*ln(sec(d*x+c)+tan(d*x
+c))+2/3/d*a*B*tan(d*x+c)+1/3/d*a*B*tan(d*x+c)*sec(d*x+c)^2

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 163, normalized size = 1.54 \[ \frac {16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a + 16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a - 3 \, A a {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, B a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a + 16*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*a - 3*A*a*(2*(3*sin(d*
x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x +
 c) - 1)) - 12*B*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 2.66, size = 166, normalized size = 1.57 \[ \frac {\left (-\frac {3\,A\,a}{4}-B\,a\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {49\,A\,a}{12}+\frac {7\,B\,a}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {31\,A\,a}{12}-\frac {13\,B\,a}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {13\,A\,a}{4}+3\,B\,a\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (3\,A+4\,B\right )}{4\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x)))/cos(c + d*x)^5,x)

[Out]

(tan(c/2 + (d*x)/2)*((13*A*a)/4 + 3*B*a) - tan(c/2 + (d*x)/2)^7*((3*A*a)/4 + B*a) - tan(c/2 + (d*x)/2)^3*((31*
A*a)/12 + (13*B*a)/3) + tan(c/2 + (d*x)/2)^5*((49*A*a)/12 + (7*B*a)/3))/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2
 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1)) + (a*atanh(tan(c/2 + (d*x)/2))*(3*A + 4*B)
)/(4*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________